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G a Lie group, acting on a smooth manifoldM.

the action is cocompact and proper.
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A, B : unital topological algebras. A (topological) bialgebroid
structure onA, overB, is

source map α : B → A , target map: β : B → A , satisfying
α(a)β(b) = β(b)α(a), for all a,b ∈ A.
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A, B : unital topological algebras. A (topological) bialgebroid
structure onA, overB, is

source map α : B → A , target map: β : B → A , satisfying
α(a)β(b) = β(b)α(a), for all a,b ∈ A.
coproduct: continuousB-B bimodule map∆ : A → A ⊗B A,

1 ∆(1) = 1 ⊗ 1;
2 (∆⊗B Id)∆ = (Id ⊗B ∆)∆ : A → A ⊗B A ⊗B A,
3 ∆(a)(β(b) ⊗ 1 − 1 ⊗ α(b)) = 0, for a ∈ A, b ∈ B,
4 ∆(a1a2) = ∆(a1)∆(a2), for a1, a2 ∈ A.
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A, B : unital topological algebras. A (topological) bialgebroid
structure onA, overB, is

source map α : B → A , target map: β : B → A , satisfying
α(a)β(b) = β(b)α(a), for all a,b ∈ A.
coproduct: continuousB-B bimodule map∆ : A → A ⊗B A,

1 ∆(1) = 1 ⊗ 1;
2 (∆⊗B Id)∆ = (Id ⊗B ∆)∆ : A → A ⊗B A ⊗B A,
3 ∆(a)(β(b) ⊗ 1 − 1 ⊗ α(b)) = 0, for a ∈ A, b ∈ B,
4 ∆(a1a2) = ∆(a1)∆(a2), for a1, a2 ∈ A.

counit: continuousB-B bimodule mapǫ : A → B,
1 ǫ(1) = 1;
2 ker ǫ is a leftA ideal;
3 (ǫ⊗B Id)∆ = (Id ⊗ ǫ)∆ = Id : A → A
4 For anya, a′ ∈ A, b, b′ ∈ B, ǫ(α(b)β(b′)a) = bǫ(a)b′, and
ǫ(aa′) = ǫ(aα(ǫ(a′))) = ǫ(aβ(ǫ(a′))).��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang
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A topologicalpara Hopf algebroid = bialgebroidA, overB, + a
continuous algebra anti-isomorphismS : A → A such that

S2 = Id , Sβ = α, mA(S ⊗B Id)∆ = βǫS : A → A,

and
S(a(1))(1)a(2) ⊗B S(a(1))(2) = 1 ⊗B S(a).
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A topologicalpara Hopf algebroid = bialgebroidA, overB, + a
continuous algebra anti-isomorphismS : A → A such that

S2 = Id , Sβ = α, mA(S ⊗B Id)∆ = βǫS : A → A,

and
S(a(1))(1)a(2) ⊗B S(a(1))(2) = 1 ⊗B S(a).

Sweedler’s notation for the coproduct∆(a) = a(1) ⊗B a(2).
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B: algebra of differential forms onM,
A : algebra ofB-valued functions onG.
Both A andB are differential graded algebras with the de Rham
differential.
g∗(a)(x) := a(gx).

α(b)(g) = b, and β(b)(g) = g∗(b).
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B: algebra of differential forms onM,
A : algebra ofB-valued functions onG.
Both A andB are differential graded algebras with the de Rham
differential.
g∗(a)(x) := a(gx).

α(b)(g) = b, and β(b)(g) = g∗(b).

A ⊗B A is isomorphic to the space ofB-valued functions on
G × G, i.e.

(φ⊗B ψ)(g1,g2) = φ(g1)g
∗
1(ψ(g2))

for φ,ψ ∈ A.
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A ⊗B A is isomorphic to the space ofB-valued functions on
G × G, i.e.

(φ⊗B ψ)(g1,g2) = φ(g1)g
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B: algebra of differential forms onM,
A : algebra ofB-valued functions onG.
Both A andB are differential graded algebras with the de Rham
differential.
g∗(a)(x) := a(gx).

α(b)(g) = b, and β(b)(g) = g∗(b).

A ⊗B A is isomorphic to the space ofB-valued functions on
G × G, i.e.

(φ⊗B ψ)(g1,g2) = φ(g1)g
∗
1(ψ(g2))

for φ,ψ ∈ A.
Define∆ : A → A ⊗B A by

∆(φ)(g1,g2) = φ(g1g2),

counit mapǫ : A → B, ǫ(φ) = ψ(1), for φ ∈ A.��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang
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we define the antipode onA by

S(φ)(g) = g∗(φ(g−1)).

It is easy to check thatS satisfies properties for an antipode of a para
Hopf algebroid. We denote this Hopf algebroid byH(G,M).
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cyclic module A♮ for (A,B, α, β,∆, ǫ,S)

Define

C0 = B, Cn = A ⊗B A ⊗B · · · ⊗B A
︸ ︷︷ ︸

n

, n ≥ 1.
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cyclic module A♮ for (A,B, α, β,∆, ǫ,S)

Define

C0 = B, Cn = A ⊗B A ⊗B · · · ⊗B A
︸ ︷︷ ︸

n

, n ≥ 1.

Faces and degeneracy operators are defined as follows:

δ0(a1 ⊗B · · · ⊗B an−1) = 1 ⊗B a1 ⊗B · · · ⊗B an−1;

δi(a
1 ⊗B · · · ⊗B an−1) = a1 ⊗B · · · ⊗B ∆ai ⊗B · · · ⊗B an−1, 1 ≤ i ≤ n − 1;

δn(a1 ⊗B · · · ⊗B an−1) = a1 ⊗B · · · ⊗B an−1 ⊗B 1;

σi (a1 ⊗B · · · ⊗B an+1) = a1 ⊗B · · · ⊗B ai ⊗B ǫ(ai+1)⊗B ai+2 · · · ⊗B an+1.
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Define

C0 = B, Cn = A ⊗B A ⊗B · · · ⊗B A
︸ ︷︷ ︸

n

, n ≥ 1.

Faces and degeneracy operators are defined as follows:

δ0(a1 ⊗B · · · ⊗B an−1) = 1 ⊗B a1 ⊗B · · · ⊗B an−1;

δi(a
1 ⊗B · · · ⊗B an−1) = a1 ⊗B · · · ⊗B ∆ai ⊗B · · · ⊗B an−1, 1 ≤ i ≤ n − 1;

δn(a1 ⊗B · · · ⊗B an−1) = a1 ⊗B · · · ⊗B an−1 ⊗B 1;

σi (a1 ⊗B · · · ⊗B an+1) = a1 ⊗B · · · ⊗B ai ⊗B ǫ(ai+1)⊗B ai+2 · · · ⊗B an+1.

The cyclic operators are given by

τn(a1 ⊗B · · · ⊗B an) = (∆n−1S(a1))(a2 ⊗ · · · an ⊗ 1).��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang
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Theorem (Kaminker-Tang)

Let G be a Lie group acting on a smooth manifold.

HC•(H(G,M)) = ⊕k≥0H•−2k (G; (Ω∗(M),d)).
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LetΩ∗(M)G be the space ofG-invariant differential forms onM,
which inherits a natural de Rham differentiald . If G acts onM
properly, then the differentiable cohomologyH•(G; (Ω∗(M),d))
is computed as follows,

H•(G; (Ω∗(M),d)) = H•(Ω∗(M)G,d).
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LetΩ∗(M)G be the space ofG-invariant differential forms onM,
which inherits a natural de Rham differentiald . If G acts onM
properly, then the differentiable cohomologyH•(G; (Ω∗(M),d))
is computed as follows,

H•(G; (Ω∗(M),d)) = H•(Ω∗(M)G,d).

Proposition

If G acts on M properly, then we have

HC•(H(G,M)) = ⊕k≥0H•−2k (Ω∗(M)G,d)

and
HP•(H(G,M)) = ⊕k∈ZH•+2k (Ω∗(M)G,d).��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang
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The cyclic cohomology groups of H(G,M) are of finite
dimension.
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Theorem (Tang-Y-Zhang)

The cyclic cohomology groups of H(G,M) are of finite
dimension.

all we need to prove is:
The cohomology groupsH•(G; (Ω∗(M),d)) are of finite dimension.
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G acts onM properly⇒ G-invariant metric onM.

M/G is compact⇒ compactY ⊂ M such thatG(Y ) = M.

inner product

〈α, β〉0 =

∫

M
α ∧ ∗β.

there existU, U ′, two open subsets ofM, such thatY ⊂ U and
that the closuresU andU ′ are both compact inM, and that
U ⊂ U ′.
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G acts onM properly⇒ G-invariant metric onM.

M/G is compact⇒ compactY ⊂ M such thatG(Y ) = M.

inner product

〈α, β〉0 =

∫

M
α ∧ ∗β.

there existU, U ′, two open subsets ofM, such thatY ⊂ U and
that the closuresU andU ′ are both compact inM, and that
U ⊂ U ′.

smooth functionf : M → [0,1] such thatf |U = 1 and
Supp(f ) ⊂ U ′. ��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang
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Γ(Ω∗(M))G : subspace ofG-invariant sections ofΩ∗(M).

For an open setW of M, define

‖s‖2
W , 0 =

∫

W

〈
s(x), s′(x)

〉
dx , ‖s‖2

W , 1 = ‖s‖W , 0 + 〈∆(s), s〉W ,0.
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For an open setW of M, define

‖s‖2
W , 0 =

∫

W

〈
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Γ(Ω∗(M))G : subspace ofG-invariant sections ofΩ∗(M).

For an open setW of M, define

‖s‖2
W , 0 =

∫

W

〈
s(x), s′(x)

〉
dx , ‖s‖2

W , 1 = ‖s‖W , 0 + 〈∆(s), s〉W ,0.

For anys ∈ Γ(Ω∗(M))G,

‖s‖U, 0 ≤ ‖fs‖0 ≤ ‖s‖U′, 0.

U ′ is covered by a finite number of copies ofU.

If s is aG-invariant section ofE , there exists a positive constant
C > 0 such that for anys ∈ Γ(Ω∗(M))G,

‖s‖U′, 0 ≤ C‖s‖U, 0.��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang
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Let dg := dm(g) be the right invariant Haar measure onG.
Defineχ : G → R

+ by dm(g−1) = χ(g)dm(g). We define
H0

f (M,Ω∗(M))G to be the completion of the space
{fs : s ∈ Γ(Ω∗(M))G} under the norm‖ · ‖0 associated to the
above inner product.
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Let dg := dm(g) be the right invariant Haar measure onG.
Defineχ : G → R

+ by dm(g−1) = χ(g)dm(g). We define
H0

f (M,Ω∗(M))G to be the completion of the space
{fs : s ∈ Γ(Ω∗(M))G} under the norm‖ · ‖0 associated to the
above inner product.

DefineH1
f (M,Ω∗(M))G to be the completion of

{fs : s ∈ Γ(Ω∗(M))G} under a (fixed) first Sobolev norm
associated to the inner product. And defineH2

f (M,Ω∗(M))G

(andH−1
f (M,Ω∗(M))G) to be the completion of the space

{fs : s ∈ Γ(Ω∗(M))G} under the correspondingH2
f (andH−1

f
norm). ��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang
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Proposition (Tang-Y-Zhang)

For any µ ∈ L2(M,Ω∗(M)), its orthogonal projection onto
H0

f (M,Ω∗(M))G can be written as

(Pfµ) (x) =
f (x)

(A(x))2

∫

G
χ(g)f (gx)µ(gx)dg,

where

A(x) =
(∫

G
χ(g)(f (gx))2 dg

)1/2

is a G-equivariant function on M, i.e. A(gx)2 = χ(g)−1A(x)2,
and is strictly positive. ��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang
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df : H0
f → H0

f
fα 7→ f dα.

adjointd∗
f : H0

f → H0
f : 〈df (fα), fβ〉0 = 〈fα, d∗

f (fβ)〉0.
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df : H0
f → H0

f
fα 7→ f dα.

adjointd∗
f : H0

f → H0
f : 〈df (fα), fβ〉0 = 〈fα, d∗

f (fβ)〉0.
For f ∈ C∞(M), denote∇(f ) to be the gradient vector field
associated to the riemannian metric onM. We can show easily that

d∗

f (fβ) = Pf

(

−
1
f

i2f∇fβ + fδβ
)

= Pf (−2i∇fβ) + fδβ,

whereδ = ∗−1d∗ andiVα is the contraction of the formα with the vector
field V .
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df : H0
f → H0

f
fα 7→ f dα.

adjointd∗
f : H0

f → H0
f : 〈df (fα), fβ〉0 = 〈fα, d∗

f (fβ)〉0.
For f ∈ C∞(M), denote∇(f ) to be the gradient vector field
associated to the riemannian metric onM. We can show easily that

d∗

f (fβ) = Pf

(

−
1
f

i2f∇fβ + fδβ
)

= Pf (−2i∇fβ) + fδβ,

whereδ = ∗−1d∗ andiVα is the contraction of the formα with the vector
field V . Now we define a self-adjoint operator

∆̃ = df d
∗

f + d∗

f df .��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang



Cyclic cohomology of Hopf algebroids
Generalized Hodge theory

Proposition (Tang-Y-Zhang)

∆̃ : H2
f → H0

f is Fredholm.
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Proposition (Tang-Y-Zhang)

∆̃ : H2
f → H0

f is Fredholm.

Corollary

dim(ker∆̃) = dim(coker∆̃) < +∞.
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Proposition (Tang-Y-Zhang)

∆̃ : H2
f → H0

f is Fredholm.

Corollary

dim(ker∆̃) = dim(coker∆̃) < +∞.

Lemma

ker∆̃ = (Im ∆̃)⊥ ∩ H2
f .
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ker∆̃ = (Im ∆̃)⊥,

i.e., we have the decomposition

H0
f = ker∆̃⊕ Im ∆̃.
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projectionH : H0
f → ker∆̃.

fα ∈ H0
f , fα− H(fα) ∈ Im ∆̃.

��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang



Cyclic cohomology of Hopf algebroids
Generalized Hodge theory

projectionH : H0
f → ker∆̃.

fα ∈ H0
f , fα− H(fα) ∈ Im ∆̃.

there is a uniquefβ ∈ Im ∆̃ such that

∆̃(fβ) = fα− H(fα).
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projectionH : H0
f → ker∆̃.

fα ∈ H0
f , fα− H(fα) ∈ Im ∆̃.

there is a uniquefβ ∈ Im ∆̃ such that

∆̃(fβ) = fα− H(fα).

define the Green operatorG : fα 7→ fβ.
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projectionH : H0
f → ker∆̃.

fα ∈ H0
f , fα− H(fα) ∈ Im ∆̃.

there is a uniquefβ ∈ Im ∆̃ such that

∆̃(fβ) = fα− H(fα).

define the Green operatorG : fα 7→ fβ.

Proposition

Let {fαn} be a sequence of smooth p-forms in H2
f (M,Ω∗(M))G

such that ‖fαn‖0 6 c and ‖∆̃(fαn)‖0 6 c for all n and for some
constant c > 0. Then it has a Cauchy subsequence.��V Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang



Cyclic cohomology of Hopf algebroids
Generalized Hodge theory

Proposition

If fβ is Hk
f (M,Ω∗(M))G and

∆̃(fα) = fβ

on M, then fα belongs to Hk+2
f (M,Ω∗(M))G for any k ≥ 0. In

particular, if fβ is a smooth differential form, so is fα.
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Proposition

Let H∗(M)G denote the kernel of the operator ∆̃. The map H
induces an isomorphism H : Hp(Ω∗(M)G, d) → H∗(M)G.
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