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@ G a Lie group, acting on a smooth manifaidl.
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Basic Setting

@ G a Lie group, acting on a smooth manifaidl.
@ the action is cocompact and proper.
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A, B : unital topological algebras.
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structure oA, overB, is

Hopf cyclic cohomology, Hodge theory, Proper actions (joint with



Hopf algebroids
Cyclic cohomology of Hopf algebroids Hopf algebroid (G, M)

Cyclic Cohomology
Hopf cyclic cohomology of H (G, M)

A, B : unital topological algebras. A (topological) bialgelatoi
structure oA, overB, is
@ sourcemap a : B — A target map: 8 : B — A, satisfying
a(a)p(b) = B(b)a(a), foralla,b € A.
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Hopf algebroids
Cyclic cohomology of Hopf algebroids Hopf algebroid (G, M)

Cyclic Cohomology
Hopf cyclic cohomology of H (G, M)

A, B : unital topological algebras. A (topological) bialgelatoi
structure oA, overB, is
@ sourcemap a : B — A target map: 8 : B — A, satisfying
a(a)p(b) = B(b)a(a), foralla,b € A.
) coproduct: continuousB-B bimodule mapA : A — A ®g A,
QO A)=121
Q (A@B Id)A = (Id ®g A)A : A — AR ARg A,
A(a)(B(b) ®1—-1®«a(b)) =0,forac A /b e B,
A(azaz) = A(a1)A(ap), forag, a; € A

QQ
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Cyclic cohomology of Hopf algebroids Hopf algebroid (G, M)

Cyclic Cohomology
Hopf cyclic cohomology of H (G, M)

A, B : unital topological algebras. A (topological) bialgelatoi
structure oA, overB, is

@ sourcemap a : B — A target map: 8 : B — A, satisfying
a(a)p(b) = B(b)a(a), foralla,b € A.
@ coproduct: continuousB-B bimodule mapA : A — A ®g A,
QO A)=121
Q (A®pld)A=(d 2 A)A:A AR AR A,
Q A(@)(BDO)®1—-1®a(b))=0,forac A, beB,
Q A(ajay) = A(ay)A(ay), forag, as € A.
@ counit: continuousB-B bimodule mag : A — B,
Q «(1)=1;
© kereis a leftA ideal;
Q (expld)A=(ld®ec)A=1d: A=A
@ Foranya,a’ € A, b,b’ € B, ¢(a(b)s(b’)a) = be(a)b’, and
e(aa’) = e(aa(e(a’))) = e(ap(e(@’))).
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Hopf algebroid (G, M)

Cyclic Cohomology

Hopf cyclic cohomology of H (G, M)

Cyclic cohomology of Hopf algebroids

A topologicalpara Hopf algebroid = bialgebroidA, overB,
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Hopf algebroids
Cyclic cohomology of Hopf algebroids Hopf algebroid (G, M)

Cyclic Cohomology
Hopf cyclic cohomology of H (G, M)

A topologicalpara Hopf algebroid = bialgebroidA, overB, + a
continuous algebra anti-isomorphisen: A — A such that

S2=1d, SB=a, mMA(S®sld)A=p3S:A—A,

and
S(a(l))(l)a(z) B S(a(l))(z) =1®g S(a)
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Hopf algebroids
Cyclic cohomology of Hopf algebroids Hopf algebroid (G, M)

Cyclic Cohomology
Hopf cyclic cohomology of H (G, M)

A topologicalpara Hopf algebroid = bialgebroidA, overB, + a
continuous algebra anti-isomorphisen: A — A such that

S2=1d, SB=a, mMA(S®sld)A=p3S:A—A,

and
S(a(l))(l)a(z) B S(a(l))(z) =1®g S(a)

Sweedler’s notation for the coprodusi{a) = aV) @g a?.
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@ B: algebra of differential forms oM,
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@ B: algebra of differential forms oM,
@ A algebra ofB-valued functions o16.
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@ B: algebra of differential forms oM,

@ A algebra ofB-valued functions o16.

@ Both A andB are differential graded algebras with the de Rham
differential.
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Cyclic Cohomology
Hopf cyclic cohomology of H (G, M)

@ B: algebra of differential forms oM,

@ A algebra ofB-valued functions o16.

@ Both A andB are differential graded algebras with the de Rham
differential.

@ g*(a)(x) := a(gx).
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Hopf algebroids
Cyclic cohomology of Hopf algebroids Hopf algebroid (G, M)

Cyclic Cohomology
Hopf cyclic cohomology of H (G, M)

@ B: algebra of differential forms oM,

@ A algebra ofB-valued functions o16.

@ Both A andB are differential graded algebras with the de Rham
differential.

@ g*(a)(x) := a(gx).

a(b)(@)=b, and  B(b)(g) =g*(b).
@ A ®g Aisisomorphic to the space Bfvalued functions on
G xG,i.e.

(¢ ®B ¥)(91,92) = ¢(91)91((92))
for ¢,y € A.
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Hopf algebroids
Cyclic cohomology of Hopf algebroids Hopf algebroid (G, M)

Cyclic Cohomology
Hopf cyclic cohomology of H(G, M)

B: algebra of differential forms ol,

A : algebra oB-valued functions o1G.

Both A andB are differential graded algebras with the de Rham
differential.

g*(a)(x) == a(gx).

a(b)(@)=b, and  B(b)(g) =g*(b).
@ A ®g Aisisomorphic to the space Bfvalued functions on
G xG,i.e.

(¢ ®B ¥)(91,92) = ¢(91)91((92))

for ¢,y € A.
DefineA : A — A®g Aby

A($)(91,92) = ¢(9192),

© ¢
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Cyclic Cohomology
Hopf cyclic cohomology of H(G, M)

B: algebra of differential forms ol,

A : algebra oB-valued functions o1G.

Both A andB are differential graded algebras with the de Rham
differential.

g*(a)(x) == a(gx).

a(b)(@)=b, and  B(b)(g) =g*(b).
@ A ®g Aisisomorphic to the space Bfvalued functions on
G xG,i.e.

(¢ ®B ¥)(91,92) = ¢(91)91((92))

for ¢,y € A.
DefineA : A — A®g Aby

A(¢)(91,92) = #(9192),
counit mape : A — B, €(¢) = (1), for ¢ € A.

© ¢
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Cyclic Cohomology
Hopf cyclic cohomology of H (G, M)

we define the antipode ch by

It is easy to check tha® satisfies properties for an antipode of a para
Hopf algebroid. We denote this Hopf algebroid HYG, M).
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Cyclic Cohomology

Hopf cyclic cohomology of H (G, M)

cyclic module A’ for (A, B, o, 3, A, ¢, S)
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Hopf cyclic cohomology of H (G, M)

cyclic module A’ for (A, B, o, 3, A, ¢, S)

@ Define
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Hopf algebroids
Cyclic cohomology of Hopf algebroids Hopf algebroid (G, M)
Cyclic Cohomology

Hopf cyclic cohomology of H (G, M)

cyclic module A’ for (A, B, o, 3, A, ¢, S)

@ Define

C'=B, C"=A®gA®g - @A, n>1.
n
@ Faces and degeneracy operators are defined as follows:
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Hopf cyclic cohomology of H (G, M)

cyclic module A’ for (A, B, o, 3, A, ¢, S)

@ Define

C'=B, C"=A®gA®g - @A, n>1.
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@ The cyclic operators are given by
m@t e - oga’) = (A" 1s@))(a?w---a" @ 1).
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Cyclic Cohomology
Hopf cyclic cohomology of H/(G, M)

Theorem (Kaminker-Tang)
Let G be a Lie group acting on a smooth manifold.

HC*(H(G,M)) = @koH* " (G; (2*(M),d)).
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Cyclic cohomology of Hopf algebroids Hopf algebroid (G, M)

Cyclic Cohomology
Hopf cyclic cohomology of H/(G, M)

@ LetQ*(M)C be the space dB-invariant differential forms om,
which inherits a natural de Rham differentdhl If G acts onM
properly, then the differentiable cohomolobly (G; (2*(M),d))
is computed as follows,

H*(G: (2" (M), d)) = H*(Q*(M)®, d).
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Hopf algebroids
Cyclic cohomology of Hopf algebroids Hopf algebroid (G, M)

Cyclic Cohomology
Hopf cyclic cohomology of H/(G, M)

@ LetQ*(M)C be the space dB-invariant differential forms o,
which inherits a natural de Rham differentdhl If G acts onM
properly, then the differentiable cohomolobly (G; (2*(M),d))
is computed as follows,

H*(G: (2" (M), d)) = H*(Q*(M)®, d).

Proposition
If G acts on M properly, then we have

HC*(H(G,M)) = @xoH*~2(2*(M)®, d)

and

HP*(#(G, M)) = @kezH**(Q"(M)®, d).
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Generalized Hodge theory

Theorem (Tang-Y-Zhang)

The cyclic cohomology groups of #(G, M) are of finite
dimension.
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Generalized Hodge theory

Theorem (Tang-Y-Zhang)

The cyclic cohomology groups of #(G, M) are of finite
dimension.

all we need to prove is:
The cohomology groupd *(G; (2*(M), d)) are of finite dimension.
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Generalized Hodge theory

@ G acts onM properly=- G-invariant metric orM.
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Generalized Hodge theory

@ G acts onM properly=- G-invariant metric orM.
@ M/G is compact- compactY C M such thalG(Y ) = M.

Hopf cyclic cohomology, Hodge theory, Proper actions (joint with



Generalized Hodge theory

@ G acts onM properly=- G-invariant metric orM.
@ M/G is compact- compactY C M such thalG(Y ) = M.
@ inner product

<Oé,5>0=/M04/\*5~
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Generalized Hodge theory

@ G acts onM properly=- G-invariant metric orM.
@ M/G is compact- compactY C M such thalG(Y ) = M.
@ inner product

<Oé,5>0=/M04/\*5~

@ there exisuU, U’,_two open subsets ®fl, such thaty ¢ U and
that the closuret) andU’ are both compact iM, and that
U cu.
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Generalized Hodge theory

@ G acts onM properly=- G-invariant metric orM.
@ M/G is compact- compactY C M such thalG(Y ) = M.
@ inner product

<Oé,5>0=/M04/\*5~

@ there exisuU, U’,_two open subsets ®fl, such thaty ¢ U and
that the closuret) andU’ are both compact iM, and that
Ucu’.

@ smooth functiorf : M — [0, 1] such thaf |, = 1 and
Supgf) c U'.
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Generalized Hodge theory

F(Q*(M))® : subspace oG-invariant sections o2*(M).
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Generalized Hodge theory

@ I(Q*(M))® : subspace oB-invariant sections oR2*(M).
@ For an open sa of M, define

Islfiy.0 = /W (s(x).s'(x))dx, [sllfy,1 = lIsllw,o + {A(S). S)w.o-
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Generalized Hodge theory

@ I(Q*(M))® : subspace oB-invariant sections oR2*(M).
@ For an open sa of M, define

Islfiy.0 = /W (s(x).s'(x))dx, [sllfy,1 = lIsllw,o + {A(S). S)w.o-

@ Foranys € I'(Q*(M))C,

Isllu,0 < lfsllo < Isllu",0-

Hopf cyclic cohomology, Hodge theory, Proper actions (joint with



Generalized Hodge theory

@ I(Q*(M))® : subspace oB-invariant sections oR2*(M).
@ For an open sa of M, define

Islfiy.0 = /W (s(x).s'(x))dx, [sllfy,1 = lIsllw,o + {A(S). S)w.o-

@ Foranys € I'(Q*(M))C,
lIsllu,0 < l[fsllo < [Is]lur,o-

@ U’ is covered by a finite number of copiesldf
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Generalized Hodge theory

@ I(Q*(M))® : subspace oB-invariant sections oR2*(M).
@ For an open sa of M, define

Islfiy.0 = /W (s(x).s'(x))dx, [sllfy,1 = lIsllw,o + {A(S). S)w.o-

@ Foranys € I'(Q*(M))C,
lIsllu,0 < l[fsllo < [Is]lur,o-

@ U’ is covered by a finite number of copiesldf

@ If sis aG-invariant section oE, there exists a positive constant
C > 0 such that for ang € I'(Q*(M))®,

Isllur,0 < Clisllu,o-
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Generalized Hodge theory

@ Letdg := dm(g) be the right invariant Haar measure Gn
Definex : G — R* bydm(g~!) = x(g)dm(g). We define
H2(M, Q*(M))® to be the completion of the space
{fs : s € [(Q*(M))®} under the nornj - ||o associated to the
above inner product.
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Generalized Hodge theory

@ Letdg := dm(g) be the right invariant Haar measure Gn
Definex : G — R* bydm(g~!) = x(g)dm(g). We define
H2(M, Q*(M))€ to be the completion of the space
{fs : s € I(Q*(M))®} under the nornj - |o associated to the
above inner product.

@ DefineH} (M, Q2*(M))€ to be the completion of
{fs : s € T(Q*(M))®} under a (fixed) first Sobolev norm
associated to the inner product. And defitigM, Q*(M))®
(and H;l(M,Q*(M))G) to be the completion of the space
{fs :'s € [(Q*(M))®} under the correspondirtg? (andH, *
norm).

Hopf cyclic cohomology, Hodge theory, Proper actions (joint with



Generalized Hodge theory

Proposition (Tang-Y-Zhang)

For any p € L2(M, Q*(M)), its orthogonal projection onto
H2(M, Q*(M))€ can be written as

(P1) () = Gtz [ (@) (@)ulex) .

where 1z
A(x) = ( JRCEE dg)

is a G-equivariant function on M, i.e. A(gx)? = x(g)tA(x)?,
and is strictly positive.
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Generalized Hodge theory

di : HY — H
fa — fda.

adjointd : HO — HO: (d;(fa), f8)o = (fa, d(f8))o.
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Generalized Hodge theory

di : HY — H
fa — fda.

adjointd : HO — HO: (d;(fa), f8)o = (fa, d(f8))o.

Forf € C>°(M), denoteV(f) to be the gradient vector field
associated to the riemannian metricdn We can show easily that

di" (fB8) = Py (—fliszﬁ + f55) = Py(—2iysB) + 108,

wheres = «~1dx andiy « is the contraction of the form with the vector
field V.
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Generalized Hodge theory

di : HY — H
fa — fda.

adjointd;" : H? — H?: (di(fa), T8)o = (fo, d*(F3))o-
Forf € C>°(M), denoteV(f) to be the gradient vector field
associated to the riemannian metricdn We can show easily that

di" (fB8) = Py (—fliszﬁ + f55) = Py(—2iysB) + 108,

wheres = «~1dx andiy « is the contraction of the form with the vector
field V. Now we define a self-adjoint operator

A = didi" + d;*d;.
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Generalized Hodge theory

Proposition (Tang-Y-Zhang)

A : H? — H? is Fredholm.
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Generalized Hodge theory

Proposition (Tang-Y-Zhang)

A : H? — H? is Fredholm.

dim(kerA) = dim(cokerA) < +oo.
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Generalized Hodge theory

Proposition (Tang-Y-Zhang)

A : H? — H? is Fredholm.

Corollary

dim(kerA) = dim(cokerA) < +oo.

Lemma

kerA = (ImA)* N HZ.
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Generalized Hodge theory

kerA = (ImA)*,
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Generalized Hodge theory

kerA = (ImA)*,
i.e., we have the decomposition

H? = kerA @ ImA.

Hopf cyclic cohomology, Hodge theory, Proper actio



Generalized Hodge theory

@ projectionH : H — kerA.
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Generalized Hodge theory

@ projectionH : H — kerA.
o fa e HO, fa —H(fa) € ImA.
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Generalized Hodge theory

@ projectionH : H — kerA.
o fa e HO, fa —H(fa) € ImA.
o there is a uniqués < Im A such that

A(fB) =fa —H(fa).
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Generalized Hodge theory

@ projectionH : H — kerA.
o faeH?, fa—H(fa) € ImA.
o there is a uniqués < Im A such that

A(fB) =fa —H(fa).

@ define the Green operat@r: fa +— 4.
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Generalized Hodge theory

@ projectionH : H — kerA.
o faeH?, fa—H(fa) € ImA.
o there is a uniqués < Im A such that

A(fB) =fa —H(fa).

@ define the Green operat@r: fa +— 4.

Proposition

Let {fan} be a sequence of smooth p-forms in HZ(M, Q*(M))©
such that |[fan|jo < ¢ and ||A(fan)]|o < ¢ for all n and for some
constant ¢ > 0. Then it has a Cauchy subsequence.
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Generalized Hodge theory

Proposition
If f 3 is HE(M, Q*(M))€ and

A(fa) =13

on M, then fa belongs to HXT2(M, Q#(M))C for any k > 0. In
particular, if f 3 is a smooth differential form, so is fa.
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Generalized Hodge theory

Proposition

Let $*(M)C denote the kernel of the operator A. The map H
induces an isomorphism H : HP(Q*(M)®, d) — $*(M)°C.
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Generalized Hodge theory
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