Hopf cyclic cohomology, Hodge theory, Proper actions (joint with Xiang Tang and Weiping Zhang)

姚一隽

复旦大学

华东师范大学, 2011年6月24日

- Cyclic cohomology of Hopf algebroids
 - Hopf algebroids
 - Hopf algebroid H(G, M)
 - Cyclic Cohomology
 - Hopf cyclic cohomology of H(G, M)
- Generalized Hodge theory

Basic Setting

Basic Setting

• G a Lie group, acting on a smooth manifold M.

Basic Setting

- G a Lie group, acting on a smooth manifold M.
- the action is cocompact and proper.

Hopf algebroids
Hopf algebroid $\mathcal{H}(G, M)$ Cyclic Cohomology
Hopf cyclic cohomology of $\mathcal{H}(G, M)$

A, B: unital topological algebras.

 $\begin{aligned} & \text{Hopf algebroids} \\ & \text{Hopf algebroid} \ \mathcal{H}(G,M) \\ & \text{Cyclic Cohomology} \\ & \text{Hopf cyclic cohomology of} \ \mathcal{H}(G,M) \end{aligned}$

A, B: unital topological algebras. A (topological) bialgebroid structure on A, over B, is

A, B: unital topological algebras. A (topological) bialgebroid structure on A, over B, is

• source map $\alpha : B \to A$, target map: $\beta : B \to A$, satisfying $\alpha(a)\beta(b) = \beta(b)\alpha(a)$, for all $a, b \in A$.

A, B: unital topological algebras. A (topological) bialgebroid structure on A, over B, is

- source map $\alpha : B \to A$, target map: $\beta : B \to A$, satisfying $\alpha(a)\beta(b) = \beta(b)\alpha(a)$, for all $a, b \in A$.
- *coproduct*: continuous B-B bimodule map $\Delta : A \to A \otimes_B A$,

 - $(\Delta \otimes_B Id)\Delta = (Id \otimes_B \Delta)\Delta : A \to A \otimes_B A \otimes_B A,$

A, B: unital topological algebras. A (topological) bialgebroid structure on A, over B, is

- source map $\alpha : B \to A$, target map: $\beta : B \to A$, satisfying $\alpha(a)\beta(b) = \beta(b)\alpha(a)$, for all $a, b \in A$.
- *coproduct*: continuous B-B bimodule map $\Delta : A \to A \otimes_B A$,

 - $(\Delta \otimes_B Id)\Delta = (Id \otimes_B \Delta)\Delta : A \to A \otimes_B A \otimes_B A,$
- *counit*: continuous *B-B* bimodule map $\epsilon : A \to B$,

 - ker ϵ is a left A ideal;

 - For any $a, a' \in A$, $b, b' \in B$, $\epsilon(\alpha(b)\beta(b')a) = b\epsilon(a)b'$, and $\epsilon(aa') = \epsilon(a\alpha(\epsilon(a'))) = \epsilon(a\beta(\epsilon(a')))$.

 $\begin{aligned} & \text{Hopf algebroids} \\ & \text{Hopf algebroid} \ \mathcal{H}(G,M) \\ & \text{Cyclic Cohomology} \\ & \text{Hopf cyclic cohomology of} \ \mathcal{H}(G,M) \end{aligned}$

A topological para Hopf algebroid

Hopf algebroids Hopf algebroid $\mathcal{H}(G, M)$ Cyclic Cohomology Hopf cyclic cohomology of $\mathcal{H}(G, M)$

A topological para Hopf algebroid = bialgebroid A, over B,

A topological *para Hopf algebroid* = bialgebroid A, over B, + a continuous algebra anti-isomorphism $S : A \rightarrow A$ such that

$$S^2 = Id$$
, $S\beta = \alpha$, $m_A(S \otimes_B Id)\Delta = \beta \epsilon S : A \to A$,

and

$$S(a^{(1)})^{(1)}a^{(2)}\otimes_B S(a^{(1)})^{(2)}=1\otimes_B S(a).$$

A topological *para Hopf algebroid* = bialgebroid A, over B, + a continuous algebra anti-isomorphism $S : A \rightarrow A$ such that

$$S^2 = Id$$
, $S\beta = \alpha$, $m_A(S \otimes_B Id)\Delta = \beta \epsilon S : A \to A$,

and

$$S(a^{(1)})^{(1)}a^{(2)}\otimes_B S(a^{(1)})^{(2)}=1\otimes_B S(a).$$

Sweedler's notation for the coproduct $\Delta(a) = a^{(1)} \otimes_B a^{(2)}$.

Hopf algebroids

Hopf algebroid $\mathcal{H}(G, M)$ Cyclic Cohomology

Hopf cyclic cohomology of $\mathcal{H}(G, M)$

• B: algebra of differential forms on M,

Hopf algebroids Hopf algebroid $\mathcal{H}(G, M)$ Cyclic Cohomology Hopf cyclic cohomology of $\mathcal{H}(G, M)$

- \bullet B: algebra of differential forms on M,
- A: algebra of B-valued functions on G.

- B: algebra of differential forms on M,
- A: algebra of B-valued functions on G.
- Both A and B are differential graded algebras with the de Rham differential.

- B: algebra of differential forms on M,
- *A* : algebra of *B*-valued functions on *G*.
- Both A and B are differential graded algebras with the de Rham differential.
- $g^*(a)(x) := a(gx)$.

$$\alpha(b)(g) = b$$
, and $\beta(b)(g) = g^*(b)$.

- B: algebra of differential forms on M,
- *A* : algebra of *B*-valued functions on *G*.
- Both *A* and *B* are differential graded algebras with the de Rham differential.
- $g^*(a)(x) := a(gx)$.

$$\alpha(b)(g) = b$$
, and $\beta(b)(g) = g^*(b)$.

• $A \otimes_B A$ is isomorphic to the space of *B*-valued functions on $G \times G$, i.e.

$$(\phi \otimes_{\mathsf{B}} \psi)(g_1, g_2) = \phi(g_1)g_1^*(\psi(g_2))$$

for $\phi, \psi \in A$.

- \bullet B: algebra of differential forms on M,
- *A* : algebra of *B*-valued functions on *G*.
- Both *A* and *B* are differential graded algebras with the de Rham differential.
- $g^*(a)(x) := a(gx)$.

$$\alpha(b)(g) = b$$
, and $\beta(b)(g) = g^*(b)$.

• $A \otimes_B A$ is isomorphic to the space of *B*-valued functions on $G \times G$, i.e.

$$(\phi \otimes_{\mathsf{B}} \psi)(g_1, g_2) = \phi(g_1)g_1^*(\psi(g_2))$$

for $\phi, \psi \in A$.

• Define $\Delta : A \rightarrow A \otimes_B A$ by

$$\Delta(\phi)(g_1,g_2)=\phi(g_1g_2),$$

- ullet B: algebra of differential forms on M,
- *A* : algebra of *B*-valued functions on *G*.
- Both A and B are differential graded algebras with the de Rham differential.
- $g^*(a)(x) := a(gx)$.

$$\alpha(b)(g) = b$$
, and $\beta(b)(g) = g^*(b)$.

• $A \otimes_B A$ is isomorphic to the space of *B*-valued functions on $G \times G$, i.e.

$$(\phi \otimes_{\mathsf{B}} \psi)(g_1,g_2) = \phi(g_1)g_1^*(\psi(g_2))$$

for $\phi, \psi \in A$.

• Define $\Delta : A \rightarrow A \otimes_B A$ by

$$\Delta(\phi)(g_1,g_2)=\phi(g_1g_2),$$

• counit map $\epsilon : A \to B$, $\epsilon(\phi) = \psi(1)$, for $\phi \in A$.

we define the antipode on A by

$$S(\phi)(g) = g^*(\phi(g^{-1})).$$

It is easy to check that S satisfies properties for an antipode of a para Hopf algebroid. We denote this Hopf algebroid by $\mathcal{H}(G, M)$.

Hopf algebroids $\mathcal{H}(G, M)$ Cyclic Cohomology Hopf cyclic cohomology of $\mathcal{H}(G, M)$

cyclic module A^{\natural} for $(A, B, \alpha, \beta, \Delta, \epsilon, S)$

cyclic module A^{\ddagger} for $(A, B, \alpha, \beta, \Delta, \epsilon, S)$

Define

$$C^0 = B$$
, $C^n = \underbrace{A \otimes_B A \otimes_B \cdots \otimes_B A}_n$, $n \ge 1$.

cyclic module A^{\natural} for $(A, B, \alpha, \beta, \Delta, \epsilon, S)$

Define

$$C^0 = B$$
, $C^n = \underbrace{A \otimes_B A \otimes_B \cdots \otimes_B A}_{n}$, $n \geq 1$.

• Faces and degeneracy operators are defined as follows:

$$\delta_{0}(a^{1} \otimes_{B} \cdots \otimes_{B} a^{n-1}) = 1 \otimes_{B} a^{1} \otimes_{B} \cdots \otimes_{B} a^{n-1};$$

$$\delta_{i}(a^{1} \otimes_{B} \cdots \otimes_{B} a^{n-1}) = a^{1} \otimes_{B} \cdots \otimes_{B} \Delta a^{i} \otimes_{B} \cdots \otimes_{B} a^{n-1}, \ 1 \leq i \leq n-1;$$

$$\delta_{n}(a^{1} \otimes_{B} \cdots \otimes_{B} a^{n-1}) = a^{1} \otimes_{B} \cdots \otimes_{B} a^{n-1} \otimes_{B} 1;$$

$$\sigma_{i}(a^{1} \otimes_{B} \cdots \otimes_{B} a^{n+1}) = a^{1} \otimes_{B} \cdots \otimes_{B} a^{i} \otimes_{B} \epsilon(a^{i+1}) \otimes_{B} a^{i+2} \cdots \otimes_{B} a^{n+1}.$$

cyclic module A^{\natural} for $(A, B, \alpha, \beta, \Delta, \epsilon, S)$

Define

$$C^0 = B$$
, $C^n = \underbrace{A \otimes_B A \otimes_B \cdots \otimes_B A}_{n}$, $n \ge 1$.

• Faces and degeneracy operators are defined as follows:

$$\delta_{0}(a^{1} \otimes_{B} \cdots \otimes_{B} a^{n-1}) = 1 \otimes_{B} a^{1} \otimes_{B} \cdots \otimes_{B} a^{n-1};$$

$$\delta_{i}(a^{1} \otimes_{B} \cdots \otimes_{B} a^{n-1}) = a^{1} \otimes_{B} \cdots \otimes_{B} \Delta a^{i} \otimes_{B} \cdots \otimes_{B} a^{n-1}, \ 1 \leq i \leq n-1;$$

$$\delta_{n}(a^{1} \otimes_{B} \cdots \otimes_{B} a^{n-1}) = a^{1} \otimes_{B} \cdots \otimes_{B} a^{n-1} \otimes_{B} 1;$$

$$\sigma_{i}(a^{1} \otimes_{B} \cdots \otimes_{B} a^{n+1}) = a^{1} \otimes_{B} \cdots \otimes_{B} a^{i} \otimes_{B} \epsilon(a^{i+1}) \otimes_{B} a^{i+2} \cdots \otimes_{B} a^{n+1}.$$

The cyclic operators are given by

$$\tau_n(a^1 \otimes_B \cdots \otimes_B a^n) = (\Delta^{n-1} S(a^1))(a^2 \otimes \cdots a^n \otimes 1).$$

Theorem (Kaminker-Tang)

Let G be a Lie group acting on a smooth manifold.

$$HC^{\bullet}(\mathcal{H}(G,M)) = \bigoplus_{k>0} H^{\bullet-2k}(G;(\Omega^*(M),d)).$$

• Let $\Omega^*(M)^G$ be the space of G-invariant differential forms on M, which inherits a natural de Rham differential d. If G acts on M properly, then the differentiable cohomology $H^{\bullet}(G; (\Omega^*(M), d))$ is computed as follows,

$$H^{\bullet}(G; (\Omega^*(M), d)) = H^{\bullet}(\Omega^*(M)^G, d).$$

• Let $\Omega^*(M)^G$ be the space of G-invariant differential forms on M, which inherits a natural de Rham differential d. If G acts on M properly, then the differentiable cohomology $H^{\bullet}(G; (\Omega^*(M), d))$ is computed as follows,

$$H^{\bullet}(G; (\Omega^*(M), d)) = H^{\bullet}(\Omega^*(M)^G, d).$$

Proposition

If G acts on M properly, then we have

$$HC^{\bullet}(\mathcal{H}(G,M)) = \bigoplus_{k \geq 0} H^{\bullet-2k}(\Omega^*(M)^G,d)$$

and

$$HP^{\bullet}(\mathcal{H}(G,M)) = \bigoplus_{k \in \mathbb{Z}} H^{\bullet+2k}(\Omega^*(M)^G,d).$$

Theorem (Tang-Y-Zhang)

The cyclic cohomology groups of $\mathcal{H}(G,M)$ are of finite dimension.

Theorem (Tang-Y-Zhang)

The cyclic cohomology groups of $\mathcal{H}(G, M)$ are of finite dimension.

all we need to prove is:

The cohomology groups $H^{\bullet}(G; (\Omega^*(M), d))$ are of finite dimension.

• G acts on M properly \Rightarrow G-invariant metric on M.

- G acts on M properly \Rightarrow G-invariant metric on M.
- M/G is compact $Y \subset M$ such that G(Y) = M.

- G acts on M properly \Rightarrow G-invariant metric on M.
- M/G is compact \Rightarrow compact $Y \subset M$ such that G(Y) = M.
- inner product

$$\langle \alpha, \beta \rangle_0 = \int_M \alpha \wedge *\beta.$$

- G acts on M properly $\Rightarrow G$ -invariant metric on M.
- M/G is compact \Rightarrow compact $Y \subset M$ such that G(Y) = M.
- inner product

$$\langle \alpha, \beta \rangle_0 = \int_M \alpha \wedge *\beta.$$

• there exist U, U', two open subsets of M, such that $Y \subset U$ and that the closures \overline{U} and $\overline{U'}$ are both compact in M, and that $\overline{U} \subset U'$.

- G acts on M properly $\Rightarrow G$ -invariant metric on M.
- M/G is compact \Rightarrow compact $Y \subset M$ such that G(Y) = M.
- inner product

$$\langle \alpha, \beta \rangle_0 = \int_M \alpha \wedge *\beta.$$

- there exist U, U', two open subsets of M, such that $Y \subset U$ and that the closures \overline{U} and $\overline{U'}$ are both compact in M, and that $\overline{U} \subset U'$.
- smooth function $f: M \to [0, 1]$ such that $f|_U = 1$ and Supp $(f) \subset U'$.

• $\Gamma(\Omega^*(M))^G$: subspace of *G*-invariant sections of $\Omega^*(M)$.

- $\Gamma(\Omega^*(M))^G$: subspace of *G*-invariant sections of $\Omega^*(M)$.
- For an open set W of M, define

$$\|s\|_{W,0}^2 = \int_W \left\langle s(x), s'(x) \right\rangle dx, \qquad \|s\|_{W,1}^2 = \|s\|_{W,0} + \left\langle \Delta(s), s \right\rangle_{W,0}.$$

- $\Gamma(\Omega^*(M))^G$: subspace of *G*-invariant sections of $\Omega^*(M)$.
- For an open set W of M, define

$$\|s\|_{W,0}^2 = \int_W \langle s(x), s'(x) \rangle dx, \qquad \|s\|_{W,1}^2 = \|s\|_{W,0} + \langle \Delta(s), s \rangle_{W,0}.$$

• For any $s \in \Gamma(\Omega^*(M))^G$,

$$\|\mathbf{s}\|_{U,0} \leq \|\mathbf{f}\mathbf{s}\|_{0} \leq \|\mathbf{s}\|_{U',0}.$$

- $\Gamma(\Omega^*(M))^G$: subspace of *G*-invariant sections of $\Omega^*(M)$.
- For an open set W of M, define

$$\|s\|_{W,0}^2 = \int_W \langle s(x), s'(x) \rangle dx, \qquad \|s\|_{W,1}^2 = \|s\|_{W,0} + \langle \Delta(s), s \rangle_{W,0}.$$

• For any $s \in \Gamma(\Omega^*(M))^G$,

$$\|\mathbf{s}\|_{U,0} \leq \|\mathbf{f}\mathbf{s}\|_{0} \leq \|\mathbf{s}\|_{U',0}.$$

• U' is covered by a finite number of copies of U.

- $\Gamma(\Omega^*(M))^G$: subspace of *G*-invariant sections of $\Omega^*(M)$.
- For an open set W of M, define

$$\|\mathbf{s}\|_{W,\,0}^2 = \int_W \left\langle \mathbf{s}(\mathbf{x}), \mathbf{s}'(\mathbf{x}) \right\rangle d\mathbf{x}, \qquad \|\mathbf{s}\|_{W,\,1}^2 = \|\mathbf{s}\|_{W,\,0} + \langle \Delta(\mathbf{s}), \mathbf{s} \rangle_{W,0}.$$

• For any $s \in \Gamma(\Omega^*(M))^G$,

$$\|\mathbf{s}\|_{U,0} \leq \|f\mathbf{s}\|_{0} \leq \|\mathbf{s}\|_{U',0}.$$

- U' is covered by a finite number of copies of U.
- If s is a G-invariant section of E, there exists a positive constant C > 0 such that for any $s \in \Gamma(\Omega^*(M))^G$,

$$\|s\|_{U',0} \leq C\|s\|_{U,0}$$
.

• Let dg := dm(g) be the right invariant Haar measure on G. Define $\chi : G \to \mathbb{R}^+$ by $dm(g^{-1}) = \chi(g)dm(g)$. We define $\mathbf{H}_f^0(M, \Omega^*(M))^G$ to be the completion of the space $\{fs : s \in \Gamma(\Omega^*(M))^G\}$ under the norm $\|\cdot\|_0$ associated to the above inner product.

- Let dg := dm(g) be the right invariant Haar measure on G. Define $\chi : G \to \mathbb{R}^+$ by $dm(g^{-1}) = \chi(g)dm(g)$. We define $\mathbf{H}_f^0(M, \Omega^*(M))^G$ to be the completion of the space $\{fs : s \in \Gamma(\Omega^*(M))^G\}$ under the norm $\|\cdot\|_0$ associated to the above inner product.
- Define $\mathbf{H}_f^1(M, \Omega^*(M))^G$ to be the completion of $\{fs: s \in \Gamma(\Omega^*(M))^G\}$ under a (fixed) first Sobolev norm associated to the inner product. And define $\mathbf{H}_f^2(M, \Omega^*(M))^G$ (and $\mathbf{H}_f^{-1}(M, \Omega^*(M))^G$) to be the completion of the space $\{fs: s \in \Gamma(\Omega^*(M))^G\}$ under the corresponding \mathbf{H}_f^2 (and \mathbf{H}_f^{-1} norm).

For any $\mu \in L^2(M, \Omega^*(M))$, its orthogonal projection onto $\mathbf{H}_f^0(M, \Omega^*(M))^G$ can be written as

$$(P_f\mu)(x) = \frac{f(x)}{(A(x))^2} \int_G \chi(g) f(gx) \mu(gx) dg,$$

where

$$A(x) = \left(\int_G \chi(g)(f(gx))^2 dg\right)^{1/2}$$

is a G-equivariant function on M, i.e. $A(gx)^2 = \chi(g)^{-1}A(x)^2$, and is strictly positive.

$$d_f: \mathbf{H}_f^0 \to \mathbf{H}_f^0$$

 $f\alpha \mapsto f d\alpha.$

adjoint
$$d_f^*: \mathbf{H}_f^0 \to \mathbf{H}_f^0: \langle d_f(f\alpha), f\beta \rangle_0 = \langle f\alpha, d_f^*(f\beta) \rangle_0.$$

$$d_f: \mathbf{H}_f^0 \to \mathbf{H}_f^0$$

 $f\alpha \mapsto f d\alpha.$

adjoint $d_f^*: \mathbf{H}_f^0 \to \mathbf{H}_f^0: \langle d_f(f\alpha), f\beta \rangle_0 = \langle f\alpha, d_f^*(f\beta) \rangle_0$. For $f \in C^{\infty}(M)$, denote $\nabla(f)$ to be the gradient vector field associated to the riemannian metric on M. We can show easily that

$$d_f^*(f\beta) = P_f\left(-\frac{1}{f}i_{2f\nabla f}\beta + f\delta\beta\right) = P_f(-2i_{\nabla f}\beta) + f\delta\beta,$$

where $\delta = *^{-1}d*$ and $i_V\alpha$ is the contraction of the form α with the vector field V.

$$d_f: \mathbf{H}_f^0 \to \mathbf{H}_f^0$$

 $f\alpha \mapsto f d\alpha.$

adjoint $d_f^*: \mathbf{H}_f^0 \to \mathbf{H}_f^0: \langle d_f(f\alpha), f\beta \rangle_0 = \langle f\alpha, d_f^*(f\beta) \rangle_0$. For $f \in C^{\infty}(M)$, denote $\nabla(f)$ to be the gradient vector field associated to the riemannian metric on M. We can show easily that

$$d_f^*(f\beta) = P_f\left(-\frac{1}{f}i_{2f\nabla f}\beta + f\delta\beta\right) = P_f(-2i_{\nabla f}\beta) + f\delta\beta,$$

where $\delta = *^{-1} d*$ and $i_V \alpha$ is the contraction of the form α with the vector field V. Now we define a self-adjoint operator

$$ilde{\Delta} = d_f d_f^* + d_f^* d_f.$$

 $ilde{\Delta}: \mathbf{H}^2_f o \mathbf{H}^0_f$ is Fredholm.

 $\tilde{\Delta}: \mathbf{H}^2_f o \mathbf{H}^0_f$ is Fredholm.

Corollary

$$\dim(\ker \tilde{\Delta}) = \dim(\operatorname{coker} \tilde{\Delta}) < +\infty.$$

 $ilde{\Delta}: \mathbf{H}^2_f o \mathbf{H}^0_f$ is Fredholm.

Corollary

 $\mathsf{dim}(\ker \tilde{\Delta}) = \mathsf{dim}(\operatorname{coker} \tilde{\Delta}) < +\infty.$

Lemma

 $\ker \tilde{\Delta} = (\operatorname{Im} \tilde{\Delta})^{\perp} \cap \mathbf{H}_{f}^{2}.$

$$\ker\tilde{\Delta}=(\operatorname{Im}\tilde{\Delta})^{\perp},$$

$$\ker \tilde{\Delta} = (\operatorname{Im} \tilde{\Delta})^{\perp},$$

i.e., we have the decomposition

$$\mathbf{H}_f^0 = \ker \tilde{\Delta} \oplus \operatorname{Im} \tilde{\Delta}.$$

• projection $H: \mathbf{H}_f^0 \to \ker \tilde{\Delta}$.

- projection $H: \mathbf{H}_f^0 \to \ker \tilde{\Delta}$.
- $f\alpha \in \mathbf{H}_f^0$, $f\alpha H(f\alpha) \in \operatorname{Im} \tilde{\Delta}$.

- projection $H: \mathbf{H}_f^0 \to \ker \tilde{\Delta}$.
- $f\alpha \in \mathbf{H}_f^0$, $f\alpha H(f\alpha) \in \operatorname{Im} \tilde{\Delta}$.
- there is a unique $f\beta \in \operatorname{Im} \tilde{\Delta}$ such that

$$\tilde{\Delta}(f\beta) = f\alpha - H(f\alpha).$$

- projection $H: \mathbf{H}_f^0 \to \ker \tilde{\Delta}$.
- $f\alpha \in \mathbf{H}_f^0$, $f\alpha H(f\alpha) \in \operatorname{Im} \tilde{\Delta}$.
- there is a unique $f\beta \in \operatorname{Im} \tilde{\Delta}$ such that

$$\tilde{\Delta}(f\beta) = f\alpha - H(f\alpha).$$

• define the Green operator $G : f\alpha \mapsto f\beta$.

- projection $H: \mathbf{H}_f^0 \to \ker \tilde{\Delta}$.
- $f\alpha \in \mathbf{H}_f^0$, $f\alpha H(f\alpha) \in \operatorname{Im} \tilde{\Delta}$.
- there is a unique $f\beta \in \operatorname{Im} \tilde{\Delta}$ such that

$$\tilde{\Delta}(f\beta) = f\alpha - H(f\alpha).$$

• define the Green operator $G : f\alpha \mapsto f\beta$.

Proposition

Let $\{f\alpha_n\}$ be a sequence of smooth p-forms in $\mathbf{H}_f^2(M,\Omega^*(M))^G$ such that $\|f\alpha_n\|_0 \leqslant c$ and $\|\tilde{\Delta}(f\alpha_n)\|_0 \leqslant c$ for all n and for some constant c>0. Then it has a Cauchy subsequence.

Proposition

If $f\beta$ is $\mathbf{H}_f^k(M,\Omega^*(M))^G$ and

$$\tilde{\Delta}(f\alpha) = f\beta$$

on M, then f_{α} belongs to $\mathbf{H}_{f}^{k+2}(M,\Omega^{*}(M))^{G}$ for any $k \geq 0$. In particular, if f_{β} is a smooth differential form, so is f_{α} .

Proposition

Let $\mathfrak{H}^*(M)^G$ denote the kernel of the operator $\tilde{\Delta}$. The map H induces an isomorphism $H: H^p(\Omega^*(M)^G, d) \to \mathfrak{H}^*(M)^G$.

Cyclic cohomology of Hopf algebroids Generalized Hodge theory

谢谢!

